Experimental Analysis of Local Condensation Heat Transfer Characteristics of CF3I Inside a Plate Heat Exchanger

Author:

Rahman Md. Mahbubur12ORCID,Bal Djiby1,Kariya Keishi3,Miyara Akio34ORCID

Affiliation:

1. Graduate School of Science and Engineering, Saga University, Saga 8408502, Japan

2. Department of Mechanical Engineering, Khulna University of Engineering & Technology, Khulna 9203, Bangladesh

3. Department of Mechanical Engineering, Saga University, Saga 8408502, Japan

4. International Institute for Carbon Neutral Energy Research, Kyushu University, Fukuoka 8190385, Japan

Abstract

Due to its low global warming potential (GWP) and good environmental properties, CF3I can be a suitable component of refrigerant mixtures in the field of refrigeration and air conditioning. In this work, the local condensation heat transfer characteristics of CF3I were experimentally investigated in a plate heat exchanger (PHE). The condensation heat transfer experiments were carried out under conditions of vapor qualities from 1.0 to 0.0, at saturation temperatures of 25–30 °C, mass fluxes of 20–50 kg/m2s, and heat fluxes of 10.4–13.7 kW/m2. Local heat transfer coefficients were found to vary in both the horizontal and vertical directions of the plate heat exchanger showing similar trends in all mass fluxes. In addition, the characteristics of local heat flux and wall temperature distribution as a function of distance from the inlet to the outlet of the refrigerant channel were explored in detail. The comparison of the experimental data of CF3I with that of R1234yf in the same test facility showed that the heat transfer coefficients of CF3I were comparable to R1234yf at a low vapor quality and a mass flux of 20 kg/m2s. However, R1234yf exhibited a transfer coefficient about 1.5 times higher at all vapor qualities and a mass flux of 50 kg/m2s. The newly developed correlation predicts well the experimentally obtained data for both CF3I and R1234yf within ±30%.

Funder

“Development of Technology and Assessment Techniques for Next-Generation Refrigerants with a Low GWP Value” of New Energy and Industrial Technology Development Organization (NEDO), Japan

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Mechanical Engineering,Condensed Matter Physics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3