SIMULATION RESULTS FOR THE EFFECT OF FIN GEOMETRY ON THE PERFORMANCE OF A CONCENTRIC HEAT EXCHANGER

Author:

CHO HONGGI1,KIM TAEHUN1,KIM JUNGHO1,LEE CHANGSEON1,CHOI JAEYOUNG1

Affiliation:

1. Advanced R&D Team, Digital Appliances, Samsung Electronics 129, Samsung-ro, Yeongtong-gu, Suwon 443-742, Korea

Abstract

The present study is aimed to investigate the effect of fin geometry on the performance of a concentric heat exchanger with the commercial CFD software of Star CCM+. In general, the concentric heat exchanger consists of inner and outer tubes. The inner tube has a lot of serrated fins spirally manufactured on its surface in order to increase the heat transfer performance. A simplified simulation model has been applied to simulate the performance of the concentric heat exchanger in this study. Both inner and outer tubes have the same length of 60 mm. The inner diameter of outer tube is 17.05 mm. The outer diameter of inner tube before manufacturing fins is 11.5 mm. Water is used as a working fluid and the concentric heat exchanger has a counter-flow configuration. The simulation parameters were fin height, fin thickness and fin width. It was found that heat transfer rate increased by 3–4% as the fin height increased from 0.95 to 1.15 mm. However, pressure drop increased highly by 39–41%. The effectiveness, which could be evaluated by calculating the ratio of enhancement of heat transfer rate to that of pressure drop, was about 74% for the fin height of 1.15 mm. In case of fin height of 1.05 mm, the effectiveness was 88% due to the increase in pressure drop, about 15%, compared with the base fin height of 0.95 mm. Also, it was noted that the effectiveness was about 88% and 95% for the fin thickness of 0.5 and 0.4 mm, respectively, compared with the base fin thickness of 0.3 mm. In case of increasing the fin width from 0.8 to 1.2 mm, the heat transfer rates slightly increased by 1–2% and the pressures drops increased by 3–4%. Hence, the effectiveness was about 98% for the fin width of 1.2 mm. And the effectiveness for the fin width of 1.0 mm was 97%. Based on the simulation results, it was concluded that maximum heat transfer rate has been obtained when the fin height is 1.15 mm. However, pressure drop is considerably increased by 39–41%. Therefore, the fin height should be carefully determined according to the criteria of pressure drop.

Publisher

Springer Science and Business Media LLC

Subject

Fluid Flow and Transfer Processes,Renewable Energy, Sustainability and the Environment,Control and Systems Engineering

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3