Affiliation:
1. Department of Mechanical Engineering, Dr. B. A. Technological University, Lonere MS-402103, India
Abstract
This paper presents a numerical study on an adiabatic helical capillary tube employing homogenous and choked flow conditions of a CO2 transcritical system. The theoretical model is based on the fundamental principle of fluid dynamics and thermodynamics. The result of the present model validates with the previously published data. The influence of operating and geometric parameters on the performance of the capillary tube has been evaluated. Flow characterizations of choked and unchoked flow conditions are determined. As the evaporator pressure drops, from unchoked condition to choked state, the percentage change in mass flow rate is minimal. A simulation graph is developed which has been helpful for the design of the helical capillary tube. The choked flow condition in a capillary tube is avoided by either increasing tube diameter of the fixed length tube or decreasing the length of the fixed tube diameter.
Publisher
Springer Science and Business Media LLC
Subject
Fluid Flow and Transfer Processes,Renewable Energy, Sustainability and the Environment,Control and Systems Engineering
Cited by
15 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献