A Three-Dimensional Ring Model for Uncertainty Quantification in Natural Frequencies and Sound Radiation Characteristics of Tires

Author:

Liu Zhe1ORCID,Zhao Wenchang2,Sepahvand Kian K.1,Wei Yintao3,Marburg Steffen1

Affiliation:

1. Chair of Vibroacoustics of Vehicles and Machines, Department of Mechanical Engineering, Technical University of Munich, 85748 Garching, Germany

2. CAS Key Laboratory of Mechanical Behavior and Design of Materials, Department of Modern Mechanics, University of Science and Technology of China, Hefei 230027, P. R. China

3. School of Vehicle and Mobility, State Key Laboratory of Automotive Safety and Energy, Tsinghua University, Beijing 100084, P. R. China

Abstract

Material and geometrical parameters of tires involve some degree of uncertainty mainly related to production processes. Accordingly, the associated structural responses are affected by these uncertainties. In this study, a novel theoretical ring model is presented to describe the in-plane and out-of-plane vibrations as well as the steady-state response of tires, and then to evaluate the influence of the uncertainties in structural parameters on the natural frequencies and the sound radiation characteristics under uncertain excitations. The Hamilton principle is applied here to derive the governing equations. The modal superposition method is used to calculate the steady-state response of the tire. In the sound radiation analysis, the in-plane and out-of-plane bending and torsional vibrations under a set of harmonic unit forces and moments are treated as the source of noise generation. On this basis, the generalized polynomial chaos expansion method is then adopted to evaluate the influence of the uncertainty on the natural frequencies and the sound power. To obtain the unknown coefficients of the expansions, the nonintrusive probabilistic collocation method is employed. Moreover, considering the concept of linear independence of vectors, the number of collocation points is reduced. It is applied to investigate the impacts of the elastic and structural uncertainties on the natural frequencies of the tire. This yields an efficient simulation in terms of computational costs. Finally, the distributions of the sound power due to the forced vibration under the random concentrated line forces are given.

Publisher

World Scientific Pub Co Pte Lt

Subject

Applied Mathematics,Computer Science Applications,Acoustics and Ultrasonics

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3