Affiliation:
1. Department of Mathematics, University Nazi BONI, 01 BP 1091 Bobo Dsso 01, Burkina Faso
Abstract
In this paper, we investigate a nonautonomous and an autonomous model of schistosomiasis transmission with a general incidence function. Firstly, we formulate the nonautonomous model by taking into account the effect of climate change on the transmission. Through rigorous analysis via theories and methods of dynamical systems, we show that the nonautonomous model has a globally asymptotically stable disease-free periodic equilibrium when the associated basic reproduction ratio [Formula: see text] is less than unity. Otherwise, the system admits at least one positive periodic solutions if [Formula: see text] is greater than unity. Secondly, using the average of periodic functions, we further derive the autonomous model associated with the nonautonomous model. Therefore, we show that the disease-free equilibrium of the autonomous model is locally and globally asymptotically stable when the associated reproduction ratio [Formula: see text] is less than unity. When [Formula: see text] is greater than unity, the existence and global asymptotic stability of the endemic equilibrium is established under certain conditions. Finally, using linear and nonlinear specific incidence function, we perform some numerical simulations to illustrate our theoretical results.
Publisher
World Scientific Pub Co Pte Lt
Subject
Applied Mathematics,Agricultural and Biological Sciences (miscellaneous),Ecology,Applied Mathematics,Agricultural and Biological Sciences (miscellaneous),Ecology
Cited by
16 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献