Virulence evolution of Toxoplasma gondii within a multi‐host system

Author:

Wang Mengyue12,Jiang Wen12ORCID

Affiliation:

1. Department of Mechanics Huazhong University of Science and Technology Wuhan China

2. Hubei Key Laboratory for Engineering Structural Analysis and Safety Assessment Wuhan China

Abstract

AbstractCurrent research on the virulence evolution of Toxoplasma gondii is mainly conducted via experiments, and studies using mathematical models are still limited. Here, we constructed a complex cycle model of T. gondii in a multi‐host system considering multiple transmission routes and cat‐mouse interaction. Based on this model, we studied how the virulence of T. gondii evolves with the factors related to transmission routes and the regulation of infection on host behavior under an adaptive dynamics framework. The study shows that all factors that enhance the role of mice favored decreased virulence of T. gondii, except the decay rate of oocysts that led to different evolutionary trajectories under different vertical transmission. The same was true of the environmental infection rate of cats, whose effect was different under different vertical transmission. The effect of the regulation factor on the virulence evolution of T. gondii was the same as that of the inherent predation rate depending on its net effect on direct and vertical transmissions. The global sensitivity analysis on the evolutionary outcome suggests that changing the vertical infection rate and decay rate was most effective in regulating the virulence of T. gondii. Furthermore, the presence of coinfection would favor virulent T. gondii and make evolutionary bifurcation easy to occur. The results reveal that the virulence evolution of T. gondii had a compromise between adapting to different transmission routes and maintaining the cat‐mouse interaction thereby leading to different evolutionary scenarios. This highlights the significance of evolutionary ecological feedback to evolution. In addition, the qualitative verification of T. gondii virulence evolution in different areas by the present framework will provide a new perspective for the study of evolution.

Funder

National Natural Science Foundation of China

Publisher

Wiley

Subject

General Agricultural and Biological Sciences,Genetics,Ecology, Evolution, Behavior and Systematics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3