Simulation and modeling of deep adversarial probabilistic neural network-based intrusion prevention system in cloud computing for smart grid cyber physical systems

Author:

Jasmine Selvakumari Jeya I.1ORCID,Ramya Devi M.2ORCID,Sivaraju S. S.3ORCID,Sureshseetharaman 4ORCID

Affiliation:

1. School of Computing Science and Engineering, VIT Bhopal University, Kothrikalan Sehore, Madhya Pradesh 466114, India

2. Department of Computer Science and Engineering, Hindusthan College of Engineering and Technology, Coimbatore 641032, India

3. Department of Electrical and Electronics Engineering, RVS College of Engineering and Technology, Kannampalayam, Coimbatore, India

4. Department of Electronics and Communication Engineering, Sri Eshwar College of Engineering Coimbatore, India

Abstract

Smart Grid Cyber Physical Systems (SG-CPS) have a substantial impact on power grid infrastructure upgrading. Nonetheless, due to the sophisticated nature of the infrastructure and the critical demand for resilient intrusion prevention systems, the task of protecting its security against data integrity attacks is a significant challenge. The simulation and assessment of security performance in SG-CPS present substantial hurdles in real-world power grid systems, owing mostly to experimental constraints. This necessitates the development of novel ways to improve distribution chain security. This research introduces a novel approach, employing a Deep Adversarial Probabilistic Neural Network (DAPNN)-based Intrusion prevention system in a cloud environment. Combining Bayesian Probabilistic Neural Networks (BEPNNs) with adversarial training and rule-based decision-making enhances precision and resilience. The major goal of this research is to detect and counteract false data injection (FDI) attacks that have the potential to compromise the integrity of power grid data. This paper proposes a novel methodology for intrusion detection in SG-CPS that combines BEPNNs with adversarial training. The addition of rule-based decision-making improves the system’s precision and resilience. The IEEE 24-bus system provides the foundation for providing data points relevant to normal operating conditions, contingency scenarios, and intentional attacks. The training procedure includes the use of a BEPNN for feature extraction, as well as the use of adversarial training approaches. The intrusion detection system has decision-making logic based on rules. The cloud infrastructure solution used in the study is Microsoft Azure. The results show that the DAPNN-based Intrusion Prevention System is effective in detecting and mitigating FDI attacks in SG-CPS. The system outperforms in terms of accuracy, precision, recall and F-measure, hence improving the security of the power grid infrastructure.

Publisher

World Scientific Pub Co Pte Ltd

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3