Hierarchical fuzzy ART for Q-learning and its application in air combat simulation

Author:

Zhou Yanan1,Ma Yaofei1,Song Xiao1,Gong Guanghong1

Affiliation:

1. School of Automation Science and Electrical Engineering, Beihang University, XueYuan Road No. 37, HaiDian District, Beijing 100191, P. R. China

Abstract

Value function approximation plays an important role in reinforcement learning (RL) with continuous state space, which is widely used to build decision models in practice. Many traditional approaches require experienced designers to manually specify the formulization of the approximating function, leading to the rigid, non-adaptive representation of the value function. To address this problem, a novel Q-value function approximation method named ‘Hierarchical fuzzy Adaptive Resonance Theory’ (HiART) is proposed in this paper. HiART is based on the Fuzzy ART method and is an adaptive classification network that learns to segment the state space by classifying the training input automatically. HiART begins with a highly generalized structure where the number of the category nodes is limited, which is beneficial to speed up the learning process at the early stage. Then, the network is refined gradually by creating the attached sub-networks, and a layered network structure is formed during this process. Based on this adaptive structure, HiART alleviates the dependence on expert experience to design the network parameter. The effectiveness and adaptivity of HiART are demonstrated in the Mountain Car benchmark problem with both fast learning speed and low computation time. Finally, a simulation application example of the one versus one air combat decision problem illustrates the applicability of HiART.

Publisher

World Scientific Pub Co Pte Lt

Subject

Computer Science Applications,Modelling and Simulation

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3