Affiliation:
1. Department of Automation, Northeast Electric Power University, Jilin, P. R. China
Abstract
In this paper, two wavelet neural network (WNN) frames which depend on Morlet wavelet function and Gaussian wavelet function were established. In order to improve the efficiency of model training, the momentum term was applied to modify the weights and thresholds, and the output of the network was summed up by function transformation of output layer nodes. When the Gaussian Wavelet Neural Networks (GWNN) and Morlet Wavelet Neural Networks (MWNN) were applied to coal consumption rate (CCR) estimation in a thermal power plant, the results confirmed their potency in function approximation. In addition, the influence of learning rate on the models was also discussed through the orthogonal experiment.
Funder
Science and technology development plan of Jilin City
National Natural Science Foundation of China
the KEY Scientific and Technological Project of Jilin Province of China
Publisher
World Scientific Pub Co Pte Lt
Subject
Computer Science Applications,Modelling and Simulation
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献