Measurement and calculation of calorific value of raw coal based on artificial neural network analysis method

Author:

Liu Peng1,Lv Shuran2

Affiliation:

1. School of Management Engineering, Capital University of Economics and Business, Beijing, China

2. nema

Abstract

The calorific value of coal is the basic technical basis for calculating parameters such as boiler heat balance, thermal efficiency, and boiler output. The calorific value of coal has different meanings, such as the calorific value of the cartridge, the high calorific value of coal, and the low calorific value of coal to generate heat at a high level of constant humidity and no ash. This paper focuses on the analysis of the structure and algorithm characteristics of artificial neural network and RBF neural network. On this basis, the predictive modelling of the received low-level calorific value is carried out. Through the test summary, the predictiveness of the neural network is better than the empirical formula. For the prediction problem with small sample size, the RBF network has better prediction performance. In addition, the quality of the sample, including its quantity and comprehensiveness, has an important impact on the predictive performance and generalization ability of the model.

Publisher

National Library of Serbia

Subject

Renewable Energy, Sustainability and the Environment

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3