User grouping and optimization-based pilot scheduling for mitigating the pilot contamination in massive multi cell MIMO systems

Author:

Kumar Ambala Pradeep1,Srinivasulu Tadisetty1

Affiliation:

1. Department of Electronics and Communication Engineering, KU College of Engineering and Technology, Kakatiya University, Warangal, Telangana, India

Abstract

Massive multiple-input multiple-output (massive MIMO) is a promising approach in wireless communication systems for providing improved link reliability and spectral efficiency and it helps several users. The main aim is to solve pilot contamination issue in massive MIMO systems; this research paper utilizes two approaches for reducing the contamination. This paper presents the user grouping approach based on sparse fuzzy C-means clustering (sparse FCM), which groups user parameters based on parameters such as large-scale fading factor, SINR, and user distance. Here, same pilot sequences are assigned to center users in which the impact of pilot contamination is limited, while the algorithm assigns orthogonal pilot sequences to the edge users that suffer severely from pilot contamination. Therefore, the proposed user grouping keeps away from the inappropriate grouping of users, enabling effective grouping even under the worst situations of the channel. Secondly, pilot scheduling is done based on elephant spider monkey optimization (ESMO), which is designed by integrating elephant herding optimization (EHO) into spider monkey optimization (SMO). The performance of pilot scheduling based on grouping-based ESMO is evaluated based on achievable rate and SINR. The proposed method achieves maximal achievable rate of 41.29[Formula: see text]bps/Hz and maximal SINR of 124.31[Formula: see text]dB.

Publisher

World Scientific Pub Co Pte Lt

Subject

Computer Science Applications,Modelling and Simulation

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3