Three-Layer Multi-UAVs Path Planning Based on ROBL-MFO

Author:

Oyana Salvador N. Obama1ORCID,Li Jun1,Usman Muhammad1

Affiliation:

1. Department of Automation, University of Science and Technology of China, Hefei 230026, P. R. China

Abstract

This paper proposes a new three-layer path planning method, where we fused two existing path planning methods (global path and local path) into a single problem for multi- unmanned aerial vehicles (UAVs) path planning for UAV. The global-path network layer contains the latest information and algorithms for global planning according to specific applications. The trajectory planning layer represents the kinematics and different motion characteristics, the planning-execution layer implements the local planning algorithm for obstacle avoidance. In the last layer, we propose a new swarm intelligence algorithm called the refraction principle and opposite-based-learning moth flame optimization (ROBL-MFO). In contrast to the classical MFO, the proposed algorithm addresses the shortcoming of the classical MFO algorithm. First, it adapts the moth position update formula to the notion of historical optimal flame average and improves the convergence speed of the algorithm. Second, it utilizes a random inverse learning strategy to narrow down the search space. Finally, the principle of refraction gives the algorithm the ability to jump out of local optima and helps the algorithm avoid premature convergence. The experimental results show that the performance of the proposed algorithm is versatile, robust, and stable.

Publisher

World Scientific Pub Co Pte Ltd

Subject

General Medicine

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3