Single-cell RNA-seq data clustering: A survey with performance comparison study

Author:

Li Ruiyi1,Guan Jihong1,Zhou Shuigeng2ORCID

Affiliation:

1. Department of Computer Science and Technology, Tongji University, 4800 Caoan Road, Shanghai, P. R. China

2. Shanghai Key Lab of Intelligent Information Processing and School of Computer Science, Fudan University, 220 Handan Road, Shanghai, P. R. China

Abstract

Clustering analysis has been widely applied to single-cell RNA-sequencing (scRNA-seq) data to discover cell types and cell states. Algorithms developed in recent years have greatly helped the understanding of cellular heterogeneity and the underlying mechanisms of biological processes. However, these algorithms often use different techniques, were evaluated on different datasets and compared with some of their counterparts usually using different performance metrics. Consequently, there lacks an accurate and complete picture of their merits and demerits, which makes it difficult for users to select proper algorithms for analyzing their data. To fill this gap, we first do a review on the major existing scRNA-seq data clustering methods, and then conduct a comprehensive performance comparison among them from multiple perspectives. We consider 13 state of the art scRNA-seq data clustering algorithms, and collect 12 publicly available real scRNA-seq datasets from the existing works to evaluate and compare these algorithms. Our comparative study shows that the existing methods are very diverse in performance. Even the top-performance algorithms do not perform well on all datasets, especially those with complex structures. This suggests that further research is required to explore more stable, accurate, and efficient clustering algorithms for scRNA-seq data.

Funder

National Natural Science Foundation of China

National Key Research and Development Program of China

Publisher

World Scientific Pub Co Pte Lt

Subject

Computer Science Applications,Molecular Biology,Biochemistry

Cited by 17 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3