CosTaL: an accurate and scalable graph-based clustering algorithm for high-dimensional single-cell data analysis

Author:

Li Yijia12,Nguyen Jonathan3,Anastasiu David C3,Arriaga Edgar A124

Affiliation:

1. Department of Biochemistry , Molecular Biology, and Biophysics, , 420 Washington Ave. S.E., Minneapolis, 55455, Minnesota , USA

2. University of Minnesota , Molecular Biology, and Biophysics, , 420 Washington Ave. S.E., Minneapolis, 55455, Minnesota , USA

3. Department of Computer Science and Engineering, Santa Clara University , 500 El Camino Real, Santa Clara, 95053, California , USA

4. Department of Chemistry, University of Minnesota , Smith Hall, 139 Smith Hall, Pleasant St SE, Minneapolis, 55455, Minnesota , USA

Abstract

Abstract With the aim of analyzing large-sized multidimensional single-cell datasets, we are describing a method for Cosine-based Tanimoto similarity-refined graph for community detection using Leiden’s algorithm (CosTaL). As a graph-based clustering method, CosTaL transforms the cells with high-dimensional features into a weighted k-nearest-neighbor (kNN) graph. The cells are represented by the vertices of the graph, while an edge between two vertices in the graph represents the close relatedness between the two cells. Specifically, CosTaL builds an exact kNN graph using cosine similarity and uses the Tanimoto coefficient as the refining strategy to re-weight the edges in order to improve the effectiveness of clustering. We demonstrate that CosTaL generally achieves equivalent or higher effectiveness scores on seven benchmark cytometry datasets and six single-cell RNA-sequencing datasets using six different evaluation metrics, compared with other state-of-the-art graph-based clustering methods, including PhenoGraph, Scanpy and PARC. As indicated by the combined evaluation metrics, Costal has high efficiency with small datasets and acceptable scalability for large datasets, which is beneficial for large-scale analysis.

Funder

National Institutes of Health

National Science Foundation

University of Minnesota

Publisher

Oxford University Press (OUP)

Subject

Molecular Biology,Information Systems

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3