ReHiC: Enhancing Hi-C data resolution via residual convolutional network

Author:

Cheng Zhe12,Liu Lin3,Lin Guoliang4,Yi Chao12,Chu Xing12,Liang Yu12,Zhou Wei12,Jin Xin12ORCID

Affiliation:

1. National Pilot School of Software, Yunnan University, Kunming 650000, China

2. Engineering Research Center of Cyberspace, Yunnan University, Kunming 650000, China

3. School of Information, Yunnan Normal University, Kunming 650000, China

4. State Key Laboratory for Conservation and Utilization of Bio-resource and School of Life Sciences, Yunnan University, Kunming 650000, China

Abstract

High-throughput chromosome conformation capture (Hi-C) is one of the most popular methods for studying the three-dimensional organization of genomes. However, Hi-C protocols can be expensive since they require large amounts of sample material and may be time-consuming. Most commonly used Hi-C data are low-resolution. Such data can only be used to identify large-scale genomic interactions and are not sufficient to identify the small-scale patterns. We propose a novel deep learning-based computational approach (named ReHiC) that enhances the resolution of Hi-C data and allows us to achieve high-resolution Hi-C data at a relatively low cost. Our model only requires 1/16 down-sampling ratio of the original sequence reading to predict higher resolution Hi-C data. This is very close to high-resolution data in terms of numerical distribution and interaction distribution. More importantly, our framework stacks deeper and converges faster due to residual blocks in the core of the network. Extensive experiments show that ReHiC performs better than HiCPlus and HiCNN, two recently developed and frequently used methods to look at the spatial organization of chromatin structure in the cell. Moreover, the portability of our framework verified by extensive experiments shows that the trained model can also enhance the Hi-C matrix of other cell types efficiently. In conclusion, ReHiC offers more accurate high-resolution image reconstruction in a broad field.

Funder

National Natural Science Foundation of China

Postdoctoral Research Foundation of China

Publisher

World Scientific Pub Co Pte Lt

Subject

Computer Science Applications,Molecular Biology,Biochemistry

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3