Sequence-based prediction of transcription upregulation by auxin in plants

Author:

Ponomarenko Petr M.1,Ponomarenko Mikhail P.23

Affiliation:

1. Children's Hospital Los Angeles, 4640 Hollywood Blvd, Los Angeles, CA 90027, USA

2. Institute of Cytology and Genetics, 10 Lavrentyev Ave., Novosibirsk, 630090, Russia

3. Novosibirsk State University, 2 Pirogov Str., Novosibirsk 630090, Russia

Abstract

Auxin is one of the main regulators of growth and development in plants. Prediction of auxin response based on gene sequence is of high importance. We found the TGTCNC consensus of 111 known natural and artificially mutated auxin response elements (AuxREs) with measured auxin-caused relative increase in genes' transcription levels, so-called either "a response to auxin" or "an auxin response." This consensus was identical to the most cited AuxRE motif. Also, we found several DNA sequence features that correlate with auxin-caused increase in genes' transcription levels, namely: number of matches with TGTCNC, homology score based on nucleotide frequencies at the consensus positions, abundances of five trinucleotides and five B-helical DNA features around these known AuxREs. We combined these correlations using a four-step empirical model of auxin response based on a gene's sequence with four steps, namely: (1) search for AuxREs with no auxin; (2) stop at the found AuxRE; (3) repression of the basal transcription of the gene having this AuxRE; and (4) manifold increase of this gene's transcription in response to auxin. Independently measured increases in transcription levels in response to auxin for 70 Arabidopsis genes were found to significantly correlate with predictions of this equation (r = 0.44, p < 0.001) as well as with TATA-binding protein (TBP)'s affinity to promoters of these genes and with nucleosome packing of these promoters (both, p < 0.025). Finally, we improved our equation for prediction of a gene's transcription increase in response to auxin by taking into account TBP-binding and nucleosome packing (r = 0.53, p < 10-6). Fisher's F-test validated the significant impact of both TBP/promoter-affinity and promoter nucleosome on auxin response in addition to those of AuxRE, F = 4.07, p < 0.025. It means that both TATA-box and nucleosome should be taken into account to recognize transcription factor binding sites upon DNA sequences: in the case of the TATA-less nucleosome-rich promoters, recognition scores must be higher than in the case of the TATA-containing nucleosome-free promoters at the same transcription activity.

Publisher

World Scientific Pub Co Pte Lt

Subject

Computer Science Applications,Molecular Biology,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3