Dempster-Shafer Theory for the Prediction of Auxin-Response Elements (AuxREs) in Plant Genomes

Author:

Sghaier Nesrine12ORCID,Ben Ayed Rayda1ORCID,Ben Marzoug Riadh1,Rebai Ahmed1ORCID

Affiliation:

1. Laboratory of Molecular and Cellular Screening Processes, Center of Biotechnology of Sfax, BP 1177, Sfax 3018, Tunisia

2. Faculty of Sciences of Gabes, University of Gabes, City Riadh Zerig, 6072 Gabes, Tunisia

Abstract

Auxin is a major regulator of plant growth and development; its action involves transcriptional activation. The identification of Auxin-response element (AuxRE) is one of the most important issues to understand the Auxin regulation of gene expression. Over the past few years, a large number of motif identification tools have been developed. Despite these considerable efforts provided by computational biologists, building reliable models to predict regulatory elements has still been a difficult challenge. In this context, we propose in this work a data fusion approach for the prediction of AuxRE. Our method is based on the combined use of Dempster-Shafer evidence theory and fuzzy theory. To evaluate our model, we have scanning the DORNRÖSCHEN promoter by our model. All proven AuxRE present in the promoter has been detected. At the 0.9 threshold we have no false positive. The comparison of the results of our model and some previous motifs finding tools shows that our model can predict AuxRE more successfully than the other tools and produce less false positive. The comparison of the results before and after combination shows the importance of Dempster-Shafer combination in the decrease of false positive and to improve the reliability of prediction. For an overall evaluation we have chosen to present the performance of our approach in comparison with other methods. In fact, the results indicated that the data fusion method has the highest degree of sensitivity (Sn) and Positive Predictive Value (PPV).

Funder

Tunisian Ministry of Higher Education and Scientific Research

Publisher

Hindawi Limited

Subject

General Immunology and Microbiology,General Biochemistry, Genetics and Molecular Biology,General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3