Affiliation:
1. CIMAT, Apdo. Postal 402, C.P. 36240, Guanajuato, Gto, México
Abstract
Let X be a general smooth projective algebraic curve of genus g ≥ 2 over ℂ. We prove that the moduli space G(α:n,d,k) of α-stable coherent systems of type (n,d,k) over X is empty if k > n and the Brill–Noether number β := β(n,d,n + 1) = β(1,d,n + 1) = g - (n + 1)(n - d + g) < 0. Moreover, if 0 ≤ β < g or β = g, n ∤g and for some α > 0, G(α : n,d,k) ≠ ∅ then G(α : n,d,k) ≠ ∅ for all α > 0 and G(α : n,d,k) = G(α′ : n,d,k) for all α,α′ > 0 and the generic element is generated. In particular, G(α : n,d,n + 1) ≠ ∅ if 0 ≤ β ≤ g and α > 0. Moreover, if β > 0 G(α : n,d,n + 1) is smooth and irreducible of dimension β(1,d,n + 1). We define a dual span of a generically generated coherent system. We assume d < g + n1≤ g + n2and prove that for all α > 0, G(α : n1,d, n1+ n2) ≠ ∅ if and only if G(α : n2,d, n1+ n2) ≠ ∅. For g = 2, we describe G(α : 2,d,k) for k > n.
Publisher
World Scientific Pub Co Pte Lt
Cited by
19 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献