Affiliation:
1. Institut Fourier, 100 rue des Maths, BP74, 38402, Saint-Martin d'Hères Cedex, France
Abstract
Using the Calabi–Yau technique to solve Monge-Ampère equations, we translate a result of T. Fujita on approximate Zariski decompositions into an analytic setting and combine this to the holomorphic Morse inequalities in order to express the volume of a line bundle as the maximum of the mean curvatures of all the singular Hermitian metrics on it, with a way to pick an element at which the maximum is reached and satisfying a singular Monge–Ampère equation. This enables us to introduce the volume of any (1,1)-class on a compact Kähler manifold, and Fujita's theorem is then extended to this context.
Publisher
World Scientific Pub Co Pte Lt
Cited by
87 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献