HIGH EPITAXIAL FERROELECTRIC RELAXOR Mn-DOPED Ba(Zr,Ti)O3 THIN FILMS ON MgO SUBSTRATES

Author:

LIU M.12,LIU J.1,COLLINS G.1,MA C. R.1,CHEN C. L.13,ALEMAYEHU A. D.4,SUBRAMANYAM G.4,DAI C.5,LIN Y.5,HE J.6,JIANG J. C.6,MELETIS E. I.6,BHALLA A.7,ZHANG Q. Y.2

Affiliation:

1. Department of Physics and Astronomy, University of Texas at San Antonio, San Antonio, TX 78249, USA

2. Key Lab of Materials Modification by Laser, Ion, Electron Beams, Dalian University of Technology, Dalian 116024, P. R. China

3. The Texas Center for Superconductivity, University of Houston, Houston, TX 77204, USA

4. Department of Electrical and Computer Engineering, University of Dayton, Dayton, Ohio 45469, USA

5. State Key Laboratory of Electronic, Thin Films and Integrated Devices, University of Electronic Science and Technology of China, Chengdu, Sichuan 610054, P. R. China

6. Department of Material Science and Engineering, University of Texas at Arlington, Arlington, TX 76019, USA

7. Department of Electrical and Computer Engineering, University of Texas at San Antonio, San Antonio, TX 78249, USA

Abstract

Environment friendly ferroelectric relaxor Ba ( Zr 0.2 Ti 0.8) O 3 thin films with the addition of 2% Mn dopant were grown on (001) MgO substrates by pulsed laser deposition. Microstructure studies with X-ray diffraction and transmission electron microscopy reveal that the as-grown Ba ( Zr 0.2 Ti 0.8) O 3 thin films are c-axis oriented with an atomic sharp interface. The films have good single crystallinity and good epitaxial quality. The interface relationship was determined to be [100]Mn:BZT//[100]MgO and (001)Mn:BZT//(001)MgO . Nanoscale order/disorder relaxor structures were found with nano-columnar structures. The microwave dielectric measurements (15–18 GHz) indicate that the films have excellent dielectric properties with large dielectric constant value, high tunability, and low dielectric loss, promising the development of room temperature tunable microwave elements.

Publisher

World Scientific Pub Co Pte Lt

Subject

Electrical and Electronic Engineering,Condensed Matter Physics,Ceramics and Composites,Electronic, Optical and Magnetic Materials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3