Relaxation of Nanostructures on the Si(111)(7×7) Surface by High Temperature Scanning Tunneling Microscopy

Author:

Ichimiya Ayahiko1,Tanaka Yoriko1,Hayashi Kazuhiko1

Affiliation:

1. Department of Quantum Engineering, Graduate School of Engineering, Nagoya University, Chikusa-ku, Nagoya, 464-01, Japan

Abstract

Single silicon islands have been produced on the Si(111)(7 × 7) surface by a scanning tunneling microscope (STM) tip. Thermal relaxation of the isolated islands is observed by temperature variable scanning tunneling microscopy with strong tip effects. The sizes of islands depend on time t with a functional form of (t0-t)α. It is found that α≃2/3 for single bilayer islands, and α≃1 for three-dimensional ones. During the decomposition of three-dimensional islands, step bunching of over-layers takes place, while the islands have certain facets, like a pyramid just after the creation. At the final stages of the three-dimensional island decompositions, two-dimensional ones with 5 × 5 structure always appear. We have found that characteristic 5 × 5 islands with a long lifetime are formed during relaxation, but the 7 × 7 islands have mostlt a short lifetime. Rotation of small islands is also observed during relaxation. We discuss the results in terms of two-dimensional vapor phase processes.

Publisher

World Scientific Pub Co Pte Lt

Subject

Materials Chemistry,Surfaces, Coatings and Films,Surfaces and Interfaces,Condensed Matter Physics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3