PREPARATION OF Co–W–P MAGNETIC THIN FILMS BY ELECTROLESS DEPOSITION

Author:

YU YUNDAN1,WEI GUOYING1,GE HONGLIANG1,GAO YING1,ZHAO ZHEN1,JIANG LAN1

Affiliation:

1. College of Materials Science and Engineering, China Jiliang University, Hang Zhou 310018, China

Abstract

An alkaline bath was developed for electroless deposition of Co – W – P thin films on a copper substrate. Effects of pH values, various concentrations of reducing agent, and different powers of ultrasonic on composition, microstructure, and magnetic properties of the films were investigated. It was found out that higher pH could improve cobalt atomic percentage and reduce amounts of phosphorus and tungsten in the film while larger amounts of NaH 2 PO 2 would decrease the cobalt content but increase the tungsten and phosphors content. The ultrasonic was introduced during the electroless deposition. Few effects of ultrasonic on the cobalt content were observed. X-ray diffraction showed that almost all of the deposited films were crystalline and contained hexagonal cobalt with a preferred crystallographic orientation (002). However, a typical amorphous Co – W – P film, which has smooth surface, and no crystallite with definite grains could be obtained when the concentration of NaH 2 PO 2 in the bath was over 1.2 mol/L. The films with rougher and agglomerate nodular structures would be formed in the bath with a higher pH value. Certain power (60 W, 40 kHz) of ultrasonic could smash the grains and led to the formation of a denser and smoother surface. Cracks appeared at the surface of the film when the ultrasonic power was 150 W. Vibration sample magnetometer results showed that the film with maximum magnetization (600 emu/g) and coercivity (1000 Oe) could be achieved when introducing ultrasonic (60 W, 40 kHz) during the deposition.

Publisher

World Scientific Pub Co Pte Lt

Subject

Materials Chemistry,Surfaces, Coatings and Films,Surfaces and Interfaces,Condensed Matter Physics

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3