ELECTRICAL CONDUCTION THROUGH SURFACE SUPERSTRUCTURES MEASURED BY MICROSCOPIC FOUR-POINT PROBES

Author:

HASEGAWA SHUJI1,SHIRAKI ICHIRO1,TANABE FUHITO1,HOBARA REI1,KANAGAWA TAIZO1,TANIKAWA TAKEHIRO1,MATSUDA IWAO1,PETERSEN CHRISTIAN L.2,HANSEN TORBEN M.3,BOGGILD PETER3,GREY FRANCOIS3

Affiliation:

1. Department of Physics, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan

2. Capres A/S, DTU Bldg. 404 east, DK-2800, Lyngby, Denmark

3. Microelectronics Center, Denmark Technical University, Bldg. 345 east, DK-2800, Lyngby, Denmark

Abstract

For in-situ measurements of the local electrical conductivity of well-defined crystal surfaces in ultrahigh vacuum, we have developed two kinds of microscopic four-point probe methods. One involves a "four-tip STM prober," in which four independently driven tips of a scanning tunneling microscope (STM) are used for measurements of four-point probe conductivity. The probe spacing can be changed from 500 nm to 1 mm. The other method involves monolithic micro-four-point probes, fabricated on silicon chips, whose probe spacing is fixed around several μm. These probes are installed in scanning-electron-microscopy/electron-diffraction chambers, in which the structures of sample surfaces and probe positions are observed in situ. The probes can be positioned precisely on aimed areas on the sample with the aid of piezoactuators. By the use of these machines, the surface sensitivity in conductivity measurements has been greatly enhanced compared with the macroscopic four-point probe method. Then the conduction through the topmost atomic layers (surface-state conductivity) and the influence of atomic steps on conductivity can be directly measured.

Publisher

World Scientific Pub Co Pte Lt

Subject

Materials Chemistry,Surfaces, Coatings and Films,Surfaces and Interfaces,Condensed Matter Physics

Cited by 80 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3