Carbonization‐Temperature‐Dependent Electrical Properties of Carbon Nanofibers—From Nanoscale to Macroscale

Author:

Borowec Julian12ORCID,Selmert Victor12ORCID,Kretzschmar Ansgar1ORCID,Fries Kai1,Schierholz Roland1ORCID,Kungl Hans1ORCID,Eichel Rüdiger‐A.12ORCID,Tempel Hermann1ORCID,Hausen Florian12ORCID

Affiliation:

1. Institute of Energy and Climate Research – Fundamental Electrochemistry (IEK‐9) Forschungszentrum Jülich GmbH 52425 Jülich Germany

2. Institute of Physical Chemistry RWTH Aachen University 52074 Aachen Germany

Abstract

AbstractAn exact understanding of the conductivity of individual fibers and their networks is crucial to tailor the overall macroscopic properties of polyacrylonitrile (PAN)‐based carbon nanofibers (CNFs). Therefore, microelectrical properties of CNF networks and nanoelectrical properties of individual CNFs, carbonized at temperatures from 600 to 1000 °C, are studied by means of conductive atomic force microscopy (C‐AFM). At the microscale, the CNF networks show good electrical interconnections enabling a homogeneously distributed current flow. The network's homogeneity is underlined by the strong correlation of macroscopic conductivities, determined by the four‐point‐method, and microscopic results. Both, microscopic and macroscopic electrical properties, solely depend on the carbonization temperature and the exact resulting fiber structure. Strikingly, nanoscale high‐resolution current maps of individual CNFs reveal a large highly resistive surface fraction, representing a clear limitation. Highly resistive surface domains are either attributed to disordered highly resistive carbon structures at the surface or the absence of electron percolation paths in the bulk volume. With increased carbonization temperature, the conductive surface domains grow in size resulting in a higher conductivity. This work contributes to existing microstructural models of CNFs by extending them by electrical properties, especially electron percolation paths.

Funder

Deutsche Forschungsgemeinschaft

Bundesministerium für Bildung, Wissenschaft, Forschung und Technologie

Publisher

Wiley

Subject

Mechanical Engineering,Mechanics of Materials,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3