Affiliation:
1. Institute of Energy and Climate Research – Fundamental Electrochemistry (IEK‐9) Forschungszentrum Jülich GmbH 52425 Jülich Germany
2. Institute of Physical Chemistry RWTH Aachen University 52074 Aachen Germany
Abstract
AbstractAn exact understanding of the conductivity of individual fibers and their networks is crucial to tailor the overall macroscopic properties of polyacrylonitrile (PAN)‐based carbon nanofibers (CNFs). Therefore, microelectrical properties of CNF networks and nanoelectrical properties of individual CNFs, carbonized at temperatures from 600 to 1000 °C, are studied by means of conductive atomic force microscopy (C‐AFM). At the microscale, the CNF networks show good electrical interconnections enabling a homogeneously distributed current flow. The network's homogeneity is underlined by the strong correlation of macroscopic conductivities, determined by the four‐point‐method, and microscopic results. Both, microscopic and macroscopic electrical properties, solely depend on the carbonization temperature and the exact resulting fiber structure. Strikingly, nanoscale high‐resolution current maps of individual CNFs reveal a large highly resistive surface fraction, representing a clear limitation. Highly resistive surface domains are either attributed to disordered highly resistive carbon structures at the surface or the absence of electron percolation paths in the bulk volume. With increased carbonization temperature, the conductive surface domains grow in size resulting in a higher conductivity. This work contributes to existing microstructural models of CNFs by extending them by electrical properties, especially electron percolation paths.
Funder
Deutsche Forschungsgemeinschaft
Bundesministerium für Bildung, Wissenschaft, Forschung und Technologie
Subject
Mechanical Engineering,Mechanics of Materials,General Materials Science
Cited by
8 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献