Breakthrough analysis of the CO2/CH4 separation on electrospun carbon nanofibers

Author:

Selmert VictorORCID,Kretzschmar AnsgarORCID,Kungl HansORCID,Tempel HermannORCID,Eichel Rüdiger-A.ORCID

Abstract

AbstractThe removal of the main impurity CO2 is a crucial step in biogas upgrading. In this work, the separation of CO2 from CH4 on electrospun polyacrylonitrile-based carbon nanofibers (CNFs) is investigated using breakthrough experiments. The CNFs are prepared at various carbonization temperatures ranging from 600 to 900 °C and feature a tailorable pore size that decreases at higher carbonization temperatures. The adsorption properties of the different CNFs are studied measuring pure component isotherms as well as column breakthrough experiments. Adsorption kinetics are discussed using a linear driving force approach to model the breakthrough experiment and obtain the adsorption rate constant. Moreover, different approaches to determine the selectivity of the competitive CO2/CH4 adsorption are applied and discussed in detail. The results clearly prove that a size exclusion effect governs the adsorption selectivity on the CNFs. While CH4 cannot adsorb in the pores of CNFs prepared at 800 °C or above, the smaller CO2 is only excluded from the pores of CNFs prepared at 900 °C. For CNFs carbonized in the range from 600 to 750 °C, values of the CO2/CH4 selectivity of 11–14 are obtained. On the CNFs prepared at 800 °C the CH4 adsorption is severely hindered, leading to a reduced adsorbed amount of CH4 and consequently to an improved CO2/CH4 selectivity of 40. Furthermore, owing to the shrinking pores, the adsorption rates of CH4 and CO2 decrease with higher carbonization temperature.

Funder

Deutsche Forschungsgemeinschaft

Forschungszentrum Jülich GmbH

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3