LOW-DIMENSIONAL ELECTRONIC STATES AT METAL SURFACES: QUANTUM WELLS AND QUANTUM WIRES

Author:

HIMPSEL F.J.1

Affiliation:

1. IBM Research Division, Thomas J. Watson Research Center, P.O. Box 218, Yorktown Heights, NY 10598, USA

Abstract

Several possibilities of “engineering” low-dimensional solids on the atomic scale are discussed. The electronic and magnetic structure of such materials is explored for two classes, i.e., multilayers and “wires” attached to step edges. Magnetic multilayers represent a particularly promising case, since quantum effects have macroscopic consequences. Quantization perpendicular to the layers is connected with oscillatory magnetic coupling, which in turn is important for obtaining “giant” magnetoresistance. This effect is being applied towards the fabrication of magnetoresistive reading heads for magnetically stored data. Extensions towards lateral superlattices and quantum wires are explored, where a stepped surface acts as a template. It is found that electrons can be trapped at step edges, and level shifts of the order 0.5 eV are observed for atoms adsorbed at step edges.

Publisher

World Scientific Pub Co Pte Lt

Subject

Materials Chemistry,Surfaces, Coatings and Films,Surfaces and Interfaces,Condensed Matter Physics

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Momentum and energy dissipation of hot electrons in a Pb/Ag(111) quantum well system;Physical Review B;2021-09-15

2. Interface Electronic Structure of Zinc-Phthalocyanine on the Silver Thin-Film Quantum-Well;e-Journal of Surface Science and Nanotechnology;2012

3. Carbon nanowalls and related materials;Journal of Materials Chemistry;2004

4. Quantum-Well States in Ultra-Thin Metal Films on Semiconductor Surfaces;e-Journal of Surface Science and Nanotechnology;2004

5. Study of the quantum-well states in ultra-thin silver films on Si surfaces;Journal of Electron Spectroscopy and Related Phenomena;2002-10

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3