MULTIPROCESSOR INTERCONNECTION NETWORKS WITH SMALL TIGHTNESS

Author:

CVETKOVIĆ DRAGOŠ1,DAVIDOVIĆ TATJANA1

Affiliation:

1. Mathematical Institute, Serbian Academy of Sciences and Arts, Kneza Mihaila 36, 11000 Belgrade, Serbia

Abstract

Homogeneous multiprocessor systems are usually modelled by undirected graphs. Vertices of these graphs represent the processors, while edges denote the connection links between adjacent processors. Let G be a graph with diameter D, maximum vertex degree Δ, the largest eigenvalue λ1 and m distinct eigenvalues. The products mΔ and (D+1)λ1 are called the tightness of G of the first and second type, respectively. In recent literature it was suggested that graphs with a small tightness of the first type are good models for the multiprocessor interconnection networks. In a previous paper we studied these and some other types of tightness and some related graph invariants and demonstrated their usefulness in the analysis of multiprocessor interconnection networks. We proved that the number of connected graphs with a bounded tightness is finite. In this paper we determine explicitly graphs with tightness values not exceeding 9. There are 69 such graphs and they contain up to 10 vertices. In addition we identify graphs with minimal tightness values when the number of vertices is n = 2,…, 10.

Publisher

World Scientific Pub Co Pte Lt

Subject

Computer Science (miscellaneous)

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. On the Laplacian spectrum of k-symmetric graphs;Discrete Mathematics;2024-01

2. Integral Laplacian graphs with a unique repeated Laplacian eigenvalue, I;Special Matrices;2023-01-01

3. Spectral analysis of weighted neighborhood networks;Discrete Mathematics, Algorithms and Applications;2022-09-28

4. Laplacian integrality in P 4 -sparse and P 4 -extendible graphs;Applied Mathematics and Computation;2018-08

5. An evolutionary image matching approach;Applied Soft Computing;2013-06

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3