Affiliation:
1. School of Mathematical Sciences, Shanghai Jiao Tong University , 800 Dongchuan Road , Shanghai , 200240 , P. R. China
2. School of Mathematical Sciences, MOE-LSC, and CMA-Shanghai, Shanghai Jiao Tong University , 800 Dongchuan Road , Shanghai , 200240 , P. R. China
3. Department of Mathematics and Computer Sciences, St. Petersburg State University , St.Petersburg , 199178 , Russia
Abstract
Abstract
The set
S
i
,
n
=
{
0
,
1
,
2
,
…
,
n
−
1
,
n
}
\
{
i
}
{S}_{i,n}=\left\{0,1,2,\ldots ,n-1,n\right\}\setminus \left\{i\right\}
,
1
⩽
i
⩽
n
1\leqslant i\leqslant n
, is called Laplacian realizable if there exists an undirected simple graph whose Laplacian spectrum is
S
i
,
n
{S}_{i,n}
. The existence of such graphs was established by Fallat et al. (On graphs whose Laplacian matrices have distinct integer eigenvalues, J. Graph Theory 50 (2005), 162–174). In this article, we consider graphs whose Laplacian spectra have the form
S
{
i
,
j
}
n
m
=
{
0
,
1
,
2
,
…
,
m
−
1
,
m
,
m
,
m
+
1
,
…
,
n
−
1
,
n
}
\
{
i
,
j
}
,
0
<
i
<
j
⩽
n
,
{S}_{{\left\{i,j\right\}}_{n}^{m}}=\left\{0,1,2,\ldots ,m-1,m,m,m+1,\ldots ,n-1,n\right\}\setminus \left\{i,j\right\},\hspace{1.0em}0\lt i\lt j\leqslant n,
and completely describe those with
m
=
n
−
1
m=n-1
and
m
=
n
m=n
. We also show close relations between graphs realizing
S
i
,
n
{S}_{i,n}
and
S
{
i
,
j
}
n
m
{S}_{{\left\{i,j\right\}}_{n}^{m}}
and discuss the so-called
S
n
,
n
{S}_{n,n}
-conjecture and the corresponding conjecture for
S
{
i
,
n
}
n
m
{S}_{{\left\{i,n\right\}}_{n}^{m}}
.