Affiliation:
1. Department of Mechanical Engineering, Sari Branch, Islamic Azad University, Sari, Iran
Abstract
In the recent decades, the main reason for the high death rate is related to cardiovascular disease and stroke. In this paper, numerical studies have been done to investigate the hemodynamic effects on the rupture of middle cerebral artery (MCA) in different working conditions. In this work, the effects of the blood viscosity and velocity on the pressure distribution and average wall shear stress (AWSS) are fully investigated. Also, the flow pattern inside the aneurysm is investigated to obtain the high-risk regions for the rupture of the aneurysm. Our findings show that the wall shear stress increases with increasing the blood flow velocity. Meanwhile, the risk of aneurysm rupture is considerably increased when the AWSS increases more than 0.6. In fact, the blood flow with high viscosity expands the high-risk region on the wall of the aneurysm. Blood flow indicates that the angle of the incoming bloodstream is substantially effective in the high-risk region on the aneurysm wall. The augmentation of the blood velocity and vortices considerably increases the risk of hemorrhage of the aneurysm.
Publisher
World Scientific Pub Co Pte Ltd
Subject
Computational Theory and Mathematics,Computer Science Applications,General Physics and Astronomy,Mathematical Physics,Statistical and Nonlinear Physics
Cited by
20 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献