Effects of blood flow characteristics on rupture of cerebral aneurysm: Computational study

Author:

Shen Xiao-Yong1,Gerdroodbary M. Barzegar2,Poozesh Amin3,Musa Abazari Amir4,Imani S. Misagh2

Affiliation:

1. Department of Radiation Medicine, Huzhou Central Hospital, Zhejiang Huzhou 313000, P. R. China

2. Department of Mechanical Engineering, Babol Noshirvani University of Technology, Babol, Iran

3. Center of Excellence for Design and Simulation of Space Systems, Faculty of Aerospace Engineering, K.N. Toosi University of Technology, Tehran, Iran

4. Department of Mechanical Engineering, Faculty of Engineering, Urmia University, Urmia, Iran

Abstract

In recent decades, cardiovascular disease and stroke are recognized as the most important reason for the high death rate. Irregular bloodstream and the circulatory system are the main reason for this issue. In this paper, Computational Fluid dynamic method is employed to study the impacts of the flow pattern inside the cerebral aneurysm for detection of the hemorrhage of the aneurysm. To achieve a reliable outcome, blood flow is considered as a non-Newtonian fluid with a power-law model. In this study, the influence of the blood viscosity and velocity on the pressure distribution and average wall shear stress (AWSS) are comprehensively studied. Moreover, the flow pattern inside the aneurysm is investigated to obtain the high-risk regions for the rupture of the aneurysm. Our results indicate that the wall shear stress (WSS) increases with increasing blood flow velocity. Furthermore, the risk of aneurysm rupture is considerably increased when the AWSS increases more than 0.6. Indeed, the blood flow with high viscosity expands the high-risk region on the wall of the aneurysm. Blood flow indicates that the angle of the incoming bloodstream is substantially effective in the high-risk region on the aneurysm wall. The augmentation of the blood velocity and vortices considerably increases the risk of hemorrhage of the aneurysm.

Publisher

World Scientific Pub Co Pte Ltd

Subject

Computational Theory and Mathematics,Computer Science Applications,General Physics and Astronomy,Mathematical Physics,Statistical and Nonlinear Physics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3