Aerodynamic performance investigation of sweptback wings with bio-inspired leading-edge tubercles

Author:

Gopinathan V. T.1,Rose J. Bruce Ralphin2

Affiliation:

1. Hindusthan College of Engineering and Technology, Coimbatore 641032, India

2. Anna University Regional Campus, Tirunelveli 627007, India

Abstract

The aerodynamic behavior of sweptback wing configurations with bio-inspired humpback whale (HW) leading-edge (LE) tubercles has been investigated through computational and experimental techniques. Specifically, the aerodynamic performance of tubercled wings with symmetric (NACA 0015) and cambered (NACA 4415) airfoils is validated against the baseline model at various angles of attack ([Formula: see text]. The [Formula: see text]/[Formula: see text] ratio of the HW flipper is strategically reduced to 0.15 for ascertaining the flow control potential of the bio-inspired wings with sweptback configuration. It is a novel effort to quantify the effect of the leading-edge protuberances on stall delay, flow separation control and distribution of streamline vortices at unique [Formula: see text]/[Formula: see text] ratio outside the thickness range of HW flipper morphology. Four tapered sweptback wing models (Baseline A, Baseline B, HUMP 0015, HUMP 4415) are used with the amplitude-to-wavelength ([Formula: see text] ratio of 0.24 and Reynolds number about [Formula: see text]. The chordwise pressure distributions are recorded at the peak, mid and trough regions of the tubercled wings through a detailed wind tunnel testing and validated with numerical analysis. Additionally, the flow characteristics over the bio-inspired surfaces have been qualitatively analyzed through the laser flow visualization (LFV) technique to reveal the influence of laminar separation bubbles (LSBs). The essential aerodynamic characteristics such as boundary layer trip delay, vortex mixing, stall delay, and flow control at different AoA are addressed through consistent experimental data. As the sweptback configuration is a primary choice for airplane wings, the improved aerodynamic characteristics of the tubercled wings can be effectively utilized for the design of novel lifting surfaces, hydroplanes and wind turbines in the near future.

Publisher

World Scientific Pub Co Pte Ltd

Subject

Computational Theory and Mathematics,Computer Science Applications,General Physics and Astronomy,Mathematical Physics,Statistical and Nonlinear Physics

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3