Effect of leading-edge protuberances on swept wing aircraft performance

Author:

Wei Xuntong1ORCID,Li Deyou1ORCID,Li Siqi1ORCID,Chang Hong1ORCID,Fu Xiaolong1ORCID,Zuo Zhigang2ORCID,Wang Hongjie1ORCID

Affiliation:

1. School of Energy Science and Engineering, Harbin Institute of Technology 1 , Harbin, China

2. Department of Energy and Power Engineering, Tsinghua University 2 , Beijing, China

Abstract

Stall is a complex phenomenon in aircraft that must be suppressed during flight. As a novel passive control method, bionic leading-edge protuberances (LEPs) have attracted widespread interest, particularly for delaying stall. Bionic protuberances at the leading edge of airfoils have been designed to control stall and increase the stability of unmanned aerial vehicles during operation, and it is the flow control mechanism associated with this application that is investigated in this study. First, numerical simulations are conducted to obtain the aerodynamic characteristics of original and bionic airfoils based on the S1223 large-lift airfoil. Next, the impact of the LEP amplitude is investigated. Finally, a vortex definition parameter, the Liutex vector, is utilized to analyze the influence of LEPs on vortices. The results show that bionic LEPs inspired by those on humpback whale flippers can improve the aerodynamic performance of airfoils under the extreme conditions that exist after stall, resulting in an ∼22% increase in the lift–drag ratio. LEPs are found to segment the flow field near the wing surface. The flow becomes bounded between adjacent protuberance structures, significantly inhibiting the development of flow separation and providing a drag reduction effect. This study thus provides a new approach for improving aircraft performance.

Funder

Natural Science Foundation of Heilongjiang Province

Publisher

AIP Publishing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3