Bifurcation analysis of a modified continuum traffic flow model considering driver’s reaction time and distance

Author:

Ai WenHuan1,Li Na1,Duan WenShan1,Tian RuiHong1,Liu DaWei2

Affiliation:

1. College of Computer Science and Engineering, Northwest Normal University, Lanzhou, Gansu 730070, P. R. China

2. College of Electrical Engineering, Lanzhou Institute of Technology, Lanzhou, Gansu 730050, P. R. China

Abstract

A modified continuum traffic flow model is established in this paper based on an extended car-following model considering driver’s reaction time and distance. The linear stability of the model and the Korteweg–de Vries (KdV) equation describing the density wave of traffic flow in the metastable region are obtained. In the new model, the relaxation term and the dissipation term exist at the same time, thus the type and stability of equilibrium solution of the model can be analyzed on the phase plane. Based on the equilibrium point, the bifurcation analysis of the model is carried out, and the existence of Hopf bifurcation and saddle-node bifurcation is proved. Numerical simulations show that the model can describe the complex nonlinear dynamic phenomena observed in freeway traffic, such as local cluster effect. Various bifurcations of the model, such as Hopf bifurcation, saddle-node bifurcation, Limit Point bifurcation of cycles, Cusp bifurcation and Bogdanov–Takens bifurcation, are also obtained by numerical simulations, and the traffic behaviors of some bifurcations are studied. The results show that the numerical solution is consistent with the analytical solution. Consequently, some nonlinear traffic phenomena can be analyzed and predicted from the perspective of global stability.

Funder

National Natural Science Foundation of China

National Natural Science Foundation of Gansu Province of China

China Post-doctoral Science Foundation Funded Project

“Qizhi” Personnel Training Support Project of Lanzhou Institute of Technology

Gansu Province Educational Research Project

Publisher

World Scientific Pub Co Pte Ltd

Subject

Computational Theory and Mathematics,Computer Science Applications,General Physics and Astronomy,Mathematical Physics,Statistical and Nonlinear Physics

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3