Improved High-Order Model for Freeway Traffic Flow

Author:

Liu Guoqing1,Lyrintzis Anastasios S.2,Michalopoulos Panos G.3

Affiliation:

1. Eue & Rachie, Inc., 6 West Fifth Street, Suite 700, St. Paul, MN 55102

2. School of Aeronautics and Astronautics, Purdue University, West Lafayette, IN 47907-1282

3. Department of Civil Engineering, University of Minnesota, 500 Pillsbury Drive S.E., Minneapolis, MN 55455

Abstract

An improved high-order continuum model is developed based on hyperbolic conservation laws with relaxation, linearized stability analysis, and more realistic considerations of traffic flow. The improved high-order model allows smooth traveling wave solutions as well as contact shocks (different densities moving at the same speed), is able to describe the amplification of small disturbances on heavy traffic, and allows fluctuations of speed around the equilibrium values. Furthermore, unlike existing high-order models, it does not result in negative speeds at the tail of congested regions and disturbance propagation speeds greater than the traffic flow velocity because the improved model has a zero characteristic speed and a nonnegative characteristic speed that is equal to the traffic flow velocity. The relaxation time is a function of density and, in the equilibrium limit, the improved high-order model is consistent with the simple continuum model. The improved high-order model is compared with the simple continuum model. Exemplary test results suggest that the improved high-order model is intuitively correct. Comparison of numerical results with field data suggests that the improved high-order model yields lower error levels than the simple continuum model.

Publisher

SAGE Publications

Subject

Mechanical Engineering,Civil and Structural Engineering

Cited by 63 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3