Non-extensive value-at-risk estimation during times of crisis

Author:

Hajihasani Ahmad1,Namaki Ali1,Asadi Nazanin1,Tehrani Reza1

Affiliation:

1. Department of Finance, Faculty of Management, University of Tehran, Tehran, Iran

Abstract

Value-at-risk (VaR) is a crucial subject that researchers and practitioners extensively use to measure and manage uncertainty in financial markets. Although VaR is a standard risk control instrument, there are criticisms about its performance. One of these cases, which has been studied in this research, is the VaR underestimation during times of crisis. In these periods, the non-Gaussian behavior of markets intensifies, and the estimated VaRs by typical models are lower than the real values. A potential approach that can be used to describe the non-Gaussian behavior of return series is the Tsallis entropy framework and nonextensive statistical methods. This paper has used the nonextensive models for analyzing financial markets’ behavior during crisis times. By applying the q-Gaussian probability density function for emerging and mature markets over 20 years, we can see a better VaR estimation than the regular models, especially during crisis times. We have shown that the q-Gaussian models composed of VaR and Expected Shortfall (ES) estimate risk better than the standard models. By comparing the ES, VaR, [Formula: see text]-VaR and [Formula: see text]-ES for emerging and mature markets, we see in confidence levels more than 0.98, the outputs of q models are more real, and the [Formula: see text]-ES model has lower errors than the other ones. Also, it is evident that in the mature markets, the difference of VaR between normal condition and nonextensive approach increases more than one standard deviation during times of crisis. Still, in the emerging markets, we cannot see a specific pattern. The findings of this paper are useful for analyzing the risk of financial crises in different markets.

Publisher

World Scientific Pub Co Pte Lt

Subject

Computational Theory and Mathematics,Computer Science Applications,General Physics and Astronomy,Mathematical Physics,Statistical and Nonlinear Physics

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3