Assessing Financial Stability in Turbulent Times: A Study of Generalized Autoregressive Conditional Heteroskedasticity-Type Value-at-Risk Model Performance in Thailand’s Transportation Sector during COVID-19

Author:

Likitratcharoen Danai1,Suwannamalik Lucksuda1

Affiliation:

1. Faculty of Business Administration, Chiang Mai University, Chiang Mai 50200, Thailand

Abstract

The Value-at-Risk (VaR) metric serves as a pivotal tool for quantifying market risk, offering an estimation of potential investment losses. Predominantly employed within financial sectors, it aids in adhering to regulatory mandates and in devising capital reserve strategies. Nonetheless, the predictive precision of VaR models frequently faces scrutiny, particularly during crises and heightened uncertainty phases. Phenomena like volatility clustering impinge on the accuracy of these models. To mitigate such constraints, conditional volatility models are integrated to augment the robustness and adaptability of VaR approaches. This study critically evaluates the efficacy of GARCH-type VaR models within the transportation sector amidst the Thai stock market’s volatility during the COVID-19 pandemic. The dataset encompasses daily price fluctuations in the Transportation Sector index (TRANS), the Service Industry index (SERVICE), and 17 pertinent stocks within the Stock Exchange of Thailand, spanning from 28 December 2018 to 28 December 2023, thereby encapsulating the pandemic era. The employed GARCH-type VaR models include GARCH (1,1) VaR, ARMA (1,1)—GARCH (1,1) VaR, GARCH (1,1)—M VaR, IGARCH (1,1) VaR, EWMA VaR, and csGARCH (1,1) VaR. These are juxtaposed with more traditional, less computationally intensive models like the Historical Simulation VaR and Delta Normal VaR. The backtesting methodologies encompass Kupiec’s POF test, the Independence Test, and Christoffersen’s Interval Forecast test. Intriguingly, the findings reveal that the Historical Simulation VaR model surpasses GARCH-type VaR models in failure rate accuracy. Within the GARCH-type category, the EWMA VaR model exhibited superior failure rate accuracy. The csGARCH (1,1) VaR and EWMA VaR models emerged as notably robust. These findings bear significant implications for managerial decision-making in financial risk management.

Publisher

MDPI AG

Reference66 articles.

1. Evaluating the performance of the skewed distributions to forecast value-at-risk in the global financial crisis;Abad;Journal of Risk,2016

2. Bankruptcy analysis of national airlines companies in Regional asia after COVID-19 pandemic;Abdullah;Jurnal Aplikasi Bisnis dan Manajemen,2020

3. The early impact of the COVID-19 pandemic on the global and Turkish economy;Turkish Journal of Medical Sciences,2020

4. The use of GARCH models in VaR estimation;Angelidis;Statistical Methodology,2004

5. GARCH models for daily stock returns: Impact of estimation frequency on Value-at-Risk and Expected Shortfall forecasts;Ardia;Economics Letters,2014

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3