Opposition-based Learning Cooking Algorithm (OLCA) for solving global optimization and engineering problems

Author:

Gopi S.1ORCID,Mohapatra Prabhujit1ORCID

Affiliation:

1. Department of Mathematics, School of Advanced Sciences, Vellore Institute of Technology, Vellore 632 014, Tamil Nadu, India

Abstract

This study introduces a new human-based meta-heuristic algorithm, the Learning Cooking Algorithm (LCA), based on the opposition-based learning (OBL) strategy, namely the Opposition-based Learning Cooking Algorithm (OLCA). The proposed OLCA algorithm consists of four stages: the first stage, where the OBL strategy is implemented to improve the initial population; the second stage, where children learn from their respective mothers; the third stage, where children and mothers learn from chefs; and the fourth stage, where OBL is applied again to update the population. The proposed OLCA has been examined over 23 test functions, and the OLCA outcomes are equated with several popular and top-performing optimization algorithms. The statistical outcomes, such as the average (Ave), standard deviation (Std), Wilcoxon rank-sum test, and [Formula: see text]-test, reveal that the outcomes of OLCA may effectively address optimization problems by maintaining a proper balance between exploitation and exploration. Furthermore, the proposed OLCA has been employed to solve three real-world engineering problems, such as the tension/compression spring problem, the gear train problem, and the three-bar truss problem. The results demonstrate the OLCA’s superiority and capability over other algorithms in solving engineering problems.

Publisher

World Scientific Pub Co Pte Ltd

Subject

Computational Theory and Mathematics,Computer Science Applications,General Physics and Astronomy,Mathematical Physics,Statistical and Nonlinear Physics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3