Learning cooking algorithm for solving global optimization problems

Author:

Gopi S.,Mohapatra Prabhujit

Abstract

AbstractIn recent years, many researchers have made a continuous effort to develop new and efficient meta-heuristic algorithms to address complex problems. Hence, in this study, a novel human-based meta-heuristic algorithm, namely, the learning cooking algorithm (LCA), is proposed that mimics the cooking learning activity of humans in order to solve challenging problems. The LCA strategy is primarily motivated by observing how mothers and children prepare food. The fundamental idea of the LCA strategy is mathematically designed in two phases: (i) children learn from their mothers and (ii) children and mothers learn from a chef. The performance of the proposed LCA algorithm is evaluated on 51 different benchmark functions (which includes the first 23 functions of the CEC 2005 benchmark functions) and the CEC 2019 benchmark functions compared with state-of-the-art meta-heuristic algorithms. The simulation results and statistical analysis such as the t-test, Wilcoxon rank-sum test, and Friedman test reveal that LCA may effectively address optimization problems by maintaining a proper balance between exploitation and exploration. Furthermore, the LCA algorithm has been employed to solve seven real-world engineering problems, such as the tension/compression spring design, pressure vessel design problem, welded beam design problem, speed reducer design problem, gear train design problem, three-bar truss design, and cantilever beam problem. The results demonstrate the LCA’s superiority and capability over other algorithms in solving complex optimization problems.

Publisher

Springer Science and Business Media LLC

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3