MHD Marangoni convection heat transfer of Ag-Cu hybrid nanofluid under a stretching/shrinking sheet with the effect of suction

Author:

Jaafar A’isyah1,Jamaludin Anuar1,Nazar Roslinda2,Pop Ioan3

Affiliation:

1. Department of Mathematics, Universiti Pertahanan Nasional Malaysia, 57000 Kuala Lumpur, Malaysia

2. Department of Mathematical Sciences, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor, Malaysia

3. Department of Mathematics, Babeş-Bolyai University, R-400084 Cluj-Napoca, Romania

Abstract

This paper examines the heat transfer characteristics of magnetohydrodynamics (MHD), suction, and Marangoni convection under the stretching/shrinking Ag–Cu hybrid nanofluid surface flow. First, the governing partial differential equations (PDEs) were transformed into ordinary differential equations (ODEs), and the numerical result was obtained using the boundary value problem solver (bvp4c) in MATLAB. The development of the Nusselt number, the velocity profile and the temperature profile was plotted, discussed and inspected. Next, this paper undergoes stability analysis and heat transfer rate comparison between water, nanofluid and hybrid nanofluid. The dual solutions were observed, and the upper branch solution is determined to be stable. Compared to water, the heat transfer rates of Ag–Cu hybrid nanofluid and Cu nanofluid were accelerated by 2.84% and 2.75%, respectively.

Funder

Ministry of Higher Education Malaysia, Universiti Pertahanan Nasional Malaysia and Universiti Kebangsaan Malaysia

Publisher

World Scientific Pub Co Pte Ltd

Subject

Computational Theory and Mathematics,Computer Science Applications,General Physics and Astronomy,Mathematical Physics,Statistical and Nonlinear Physics

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3