Traffic-driven SIR epidemic spread dynamics on scale-free networks

Author:

Zhang Yongqiang1,Li Shuang1,Li Xiaotian1,Ma Jinlong1

Affiliation:

1. School of Information Science and Engineering, Hebei University of Science and Technology, Shijiazhuang 050018, P. R. China

Abstract

Traffic flow affects the transmission and distribution of pathogens. The large-scale traffic flow that emerges with the rapid development of global economic integration plays a significant role in the epidemic spread. In order to more accurately indicate the time characteristics of the traffic-driven epidemic spread, new parameters are added to represent the change of the infection rate parameter over time on the traffic-driven Susceptible–Infected–Recovered (SIR) epidemic spread model. Based on the collected epidemic data in Hebei Province, a linear regression method is performed to estimate the infection rate parameter and an improved traffic-driven SIR epidemic spread dynamics model is established. The impact of different link-closure rules, traffic flow and average degree on the epidemic spread is studied. The maximum instantaneous number of infected nodes and the maximum number of ever infected nodes are obtained through simulation. Compared to the simulation results of the links being closed between large-degree nodes, closing the links between small-degree nodes can effectively inhibit the epidemic spread. In addition, reducing traffic flow and increasing the average degree of the network can also slow the epidemic outbreak. The study provides the practical scientific basis for epidemic prevention departments to conduct traffic control during epidemic outbreaks.

Funder

Natural Science Foundation of Hebei Province

Technology Project of Hebei Education Department

Publisher

World Scientific Pub Co Pte Ltd

Subject

Computational Theory and Mathematics,Computer Science Applications,General Physics and Astronomy,Mathematical Physics,Statistical and Nonlinear Physics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3