Affiliation:
1. Department of Mechanical Engineering, Faculty of Engineering, Jazan University, Jazan 82822, Saudi Arabia
Abstract
To illustrate the role of Lorentz force on migration of nanopowders, CVFEM simulation has been reported in current research. The chamber contains hybrid nanomaterial and made up form porous media. Momentum equations have been modified for present paper with adding new source terms. The mentioned method works based on FEM in generation of mesh and calculation of gradient of scalars while it uses FVM approach for employing source terms. Testing with benchmark article shows the nice accuracy. Increase of permeability can enhance the speed of nanopowders and iso-temperature lines shapes become complicated. Impose of MHD creates new force against buoyancy and declines the velocity of the nanomaterial. Also, complication of isotherms declines with rise of Ha. With growth of Da, value of [Formula: see text] increases about 111% and 64.2% when [Formula: see text] and 20, respectively. Also, augment of Ha results in reduction of velocity about 30% and 47.6% when [Formula: see text] and 100. Given [Formula: see text], Nu for [Formula: see text] is 6.83 times bigger than case with [Formula: see text]. Nu decreases to about 67.28% with increase of Ha when [Formula: see text], [Formula: see text]. As Da increases, Nu rises about 62% when [Formula: see text], [Formula: see text].
Publisher
World Scientific Pub Co Pte Ltd
Subject
Computational Theory and Mathematics,Computer Science Applications,General Physics and Astronomy,Mathematical Physics,Statistical and Nonlinear Physics
Cited by
12 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献