Impact of magnetic field on nanofluid thermophysical treatment within enclosure

Author:

Shafee Ahmad1ORCID

Affiliation:

1. Public Authority of Applied Education & Training, College of Technological Studies, Applied Science Department, Shuwaikh, Kuwait

Abstract

Numerical technique for examining the transport of nanofluid within the porous container has been applied. The tank has one curved hot wall which is located in the center of the outer cylinder. The single-phase approach to deriving properties of nanofluid was applied and Darcy law has been implemented to involve the porous term in the equation. The format of the equation has been converted to stream function format to remove the pressure terms and final equations were solved via CVFEM. The written code was verified according to the previous data of the published work. Outputs showed that loading alumina causes Nu to augment by 26.71% when Ha is zero and it can be increased about 41.22% when Ha = 15. Applying a magnetic field can reduce the Nu around 37.93% when [Formula: see text]. With increase of strength of rotating cell with the rise of Ra, Nu increases by about 38.22%. Changing the shape of alumina can increase the Nu by about 11.73% when [Formula: see text] and [Formula: see text].

Publisher

World Scientific Pub Co Pte Ltd

Subject

Condensed Matter Physics,Statistical and Nonlinear Physics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3