Mixed convective heat transfer and heat generation simulation in lid-driven enclosure filled with porous medium

Author:

Souayeh Basma12,Hdhiri Najib2

Affiliation:

1. Department of Physics, College of Science, King Faisal University, PO Box 400, Al-Ahsa 31982 Saudi Arabia

2. Faculty of Sciences of Tunis, Laboratory of Fluid Mechanics, Physics Department, University of Tunis El Manar, 2092 Tunis, Tunisia

Abstract

Researchers in heat transfer field always attempt to find new solutions to optimize the performance of energy devices through heat transfer enhancement. Among various methods which are implemented to reinforce the thermal performance of energy systems, one is utilizing porous media in heat exchangers. In this study, characteristics of laminar mixed convection in a porous two-sided lid-driven square cavity induced by an internal heat generation at the bottom wall have been carried out by using a numerical methodology based on the finite volume method and the full multigrid acceleration. The two-sided and top walls of the enclosure are assumed to have cold temperature while the remaining walls of the bottom wall are insulated. The working fluid is air so that the Prandtl number equates 0.71. The behavior of different physical parameters is shown graphically so that computations have been conducted over a wide range of pertinent parameters; (10[Formula: see text] Ri [Formula: see text]), Darcy number ([Formula: see text] Da [Formula: see text]), internal Rayleigh number ([Formula: see text] Ra[Formula: see text]), the porosity ([Formula: see text]) and the Grashof number (10[Formula: see text] Gr [Formula: see text]). Results revealed that heat transfer mechanism and the flow characteristics inside the enclosure are strongly dependent on the Grashof number. For instance, the best heat transfer rates at the considered values of internal Rayleigh numbers are obtained for a high Grashof number. Furthermore, an increase of internal heat generation (RaI) leads to a higher flow and temperature intensities for Grashof numbers ranging from [Formula: see text] to [Formula: see text] and a specific Richardson number value. Besides, an increase in porosity values ([Formula: see text]) leads to an obvious decrease in the average Nusselt number. Maximum temperature [Formula: see text] is optimal for high ([Formula: see text]) value. A correlation expression for the average Nusselt number relative to the internal heat source was established in function of two control parameters such as Darcy and Richardson numbers.

Publisher

World Scientific Pub Co Pte Lt

Subject

Computational Theory and Mathematics,Computer Science Applications,General Physics and Astronomy,Mathematical Physics,Statistical and Nonlinear Physics

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3