Entropy Generation Analysis of Heat Dissipative Darcy–Forchheimer Flow of Hybrid Nanofluid with Thermal Dispersion Effect

Author:

Mishra Manoj Kumar1ORCID,Pandey Ashutosh1ORCID

Affiliation:

1. Department of Mathematics, School of Advanced Science, VIT-AP University, Amaravathi, India

Abstract

Entropy measures the disorderness and randomness in the thermal systems. It has significant influence over efficiency and performances of the thermal systems. The motive of the research paper is to present a comparative analysis of entropy generation of a heat dissipative Darcy–Forchheimer flow of copper (Cu/H2O)-based mono and (CuAl2O3/H2O)-based hybrid nanofluid under the influence of thermal dispersion. The mathematical model of the conceptualized flow problem is formulated using single phase nanofluid model along with Darcy–Forchheimer equation for non-Darcy porous medium flow. The system of dimensional Partial Differential Equation (PDE) depicting the flow problem is converted in the system of dimensionless Ordinary Differential Equation (ODE) using the suitable similarity variables and has been solved by MATLAB’s bvp4c package. The flow variables, engineering parameters like skin friction and Nusselt number along with entropy generation, have been analyzed for the active parameters inherited in the problem. The findings suggest that heat transfer rate on the surface enhances with the increment in thermal dispersion parameter. Further, it is reported that the hybrid nanofluid generates lesser entropy as compared to the mono-nanofluid. This research has potential to serve the real-life applications based on electronics and geothermal systems.

Publisher

World Scientific Pub Co Pte Ltd

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3