Carrier mobility predicted by born effective charge in Janus transition metal dichalcogenides monolayers

Author:

Hu Jingxin1,Luo Jing1,Liu Ziran12

Affiliation:

1. Department of Physics and Key Laboratory for Low-Dimensional Structures and Quantum Manipulation (Ministry of Education), Hunan Normal University, Changsha 410081, P. R. China

2. Key Laboratory for Matter Microstructure and Function of Hunan Province, Hunan Normal University, Changsha 410081, P. R. China

Abstract

Two-dimensional (2D) Janus transition metal dichalcogenides (TMDs) are a new class of materials with unique electrical properties. The carrier mobility of Janus TMDs calculated by deformation potential theory (DPT) is unreliable because partial lattice scattering is not taken into account. In this work, we propose a new Born Effective Charge (BEC) method to predict the carrier mobility of Janus TMDs by employing density functional perturbation theory, which includes the important factors neglected in DPT. We have figured out the relationship between carrier mobility and BEC value, that is, the lower the absolute BEC value, the higher the carrier mobility of electrons or holes. The carrier mobilities of commonly used defective and defect-free Janus TMDs were calculated by the new method, and the calculated results are in good agreement with the experimental results. This method can be used for high-throughput calculations to select high-carrier mobility 2D materials, and the data provide a practical paradigm for evaluating carrier mobility in 2D TMDs.

Funder

National Natural Science Foundation of China

Hunan Provincial Education Department

Hunan Provincial Natural Science Foundation

Publisher

World Scientific Pub Co Pte Ltd

Subject

Computational Theory and Mathematics,Computer Science Applications,General Physics and Astronomy,Mathematical Physics,Statistical and Nonlinear Physics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3