PROTEIN SIDE-CHAIN PACKING PROBLEM: A MAXIMUM EDGE-WEIGHT CLIQUE ALGORITHMIC APPROACH

Author:

DUKKA BAHADUR K. C.1,TOMITA ETSUJI2,SUZUKI JUN'ICHI2,AKUTSU TATSUYA3

Affiliation:

1. Graduate School of Informatics & Bioinformatics Center Kyoto University, Kyoto, 611-0001, Japan

2. Graduate School of Electro-Communications, The University of Electro-Communications, Tokyo, 182-8585, Japan

3. Bioinformatics Center, Kyoto University, Kyoto, 611-0001, Japan

Abstract

"Protein Side-chain Packing" has an ever-increasing application in the field of bio-informatics, dating from the early methods of homology modeling to protein design and to the protein docking. However, this problem is computationally known to be NP-hard. In this regard, we have developed a novel approach to solve this problem using the notion of a maximum edge-weight clique. Our approach is based on efficient reduction of protein side-chain packing problem to a graph and then solving the reduced graph to find the maximum clique by applying an efficient clique finding algorithm developed by our co-authors. Since our approach is based on deterministic algorithms in contrast to the various existing algorithms based on heuristic approaches, our algorithm guarantees of finding an optimal solution. We have tested this approach to predict the side-chain conformations of a set of proteins and have compared the results with other existing methods. We have found that our results are favorably comparable or better than the results produced by the existing methods. As our test set contains a protein of 494 residues, we have obtained considerable improvement in terms of size of the proteins and in terms of the efficiency and the accuracy of prediction.

Publisher

World Scientific Pub Co Pte Lt

Subject

Computer Science Applications,Molecular Biology,Biochemistry

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3