Evaluating feature-selection stability in next-generation proteomics

Author:

Goh Wilson Wen Bin12,Wong Limsoon12

Affiliation:

1. School of Pharmaceutical Science and Technology, Tianjin University, 92 Weijin Road, Tianjin 300072, China

2. Department of Computer Science, National University of Singapore, 13 Computing Drive, Singapore 117417 Singapore

Abstract

Identifying reproducible yet relevant features is a major challenge in biological research. This is well documented in genomics data. Using a proposed set of three reliability benchmarks, we find that this issue exists also in proteomics for commonly used feature-selection methods, e.g. [Formula: see text]-test and recursive feature elimination. Moreover, due to high test variability, selecting the top proteins based on [Formula: see text]-value ranks — even when restricted to high-abundance proteins — does not improve reproducibility. Statistical testing based on networks are believed to be more robust, but this does not always hold true: The commonly used hypergeometric enrichment that tests for enrichment of protein subnets performs abysmally due to its dependence on unstable protein pre-selection steps. We demonstrate here for the first time the utility of a novel suite of network-based algorithms called ranked-based network algorithms (RBNAs) on proteomics. These have originally been introduced and tested extensively on genomics data. We show here that they are highly stable, reproducible and select relevant features when applied to proteomics data. It is also evident from these results that use of statistical feature testing on protein expression data should be executed with due caution. Careless use of networks does not resolve poor-performance issues, and can even mislead. We recommend augmenting statistical feature-selection methods with concurrent analysis on stability and reproducibility to improve the quality of the selected features prior to experimental validation.

Publisher

World Scientific Pub Co Pte Lt

Subject

Computer Science Applications,Molecular Biology,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3