Homogeneous Ensemble Feature Selection for Mass Spectrometry Data Prediction in Cancer Studies

Author:

Liang Yulan1,Gharipour Amin2,Kelemen Erik3,Kelemen Arpad4ORCID

Affiliation:

1. Department of Family and Community Health, University of Maryland Baltimore, Baltimore, MD 21201, USA

2. School of Information and Communication Technology, Griffith University, Gold Coast Campus, Brisbane, QLD 4222, Australia

3. Department of Computer Science, University of Maryland College Park, College Park, MD 20742, USA

4. Department of Organizational Systems and Adult Health, University of Maryland Baltimore, Baltimore, MD 21201, USA

Abstract

The identification of important proteins is critical for the medical diagnosis and prognosis of common diseases. Diverse sets of computational tools have been developed for omics data reduction and protein selection. However, standard statistical models with single-feature selection involve the multi-testing burden of low power with limited available samples. Furthermore, high correlations among proteins with high redundancy and moderate effects often lead to unstable selections and cause reproducibility issues. Ensemble feature selection in machine learning (ML) may identify a stable set of disease biomarkers that could improve the prediction performance of subsequent classification models and thereby simplify their interpretability. In this study, we developed a three-stage homogeneous ensemble feature selection (HEFS) approach for both identifying proteins and improving prediction accuracy. This approach was implemented and applied to ovarian cancer proteogenomics datasets comprising (1) binary putative homologous recombination deficiency (HRD)- positive or -negative samples; (2) multiple mRNA classes (differentiated, proliferative, immunoreactive, mesenchymal, and unknown samples). We conducted and compared various ML methods with HEFS including random forest (RF), support vector machine (SVM), and neural network (NN) for predicting both binary and multiple-class outcomes. The results indicated that the prediction accuracies varied for both binary and multiple-class classifications using various ML approaches with the proposed HEFS method. RF and NN provided better prediction accuracies than simple Naive Bayes or logistic models. For binary outcomes, with a sample size of 122 and nine selected prediction proteins using our proposed three-stage HEFS approach, the best ensemble ML (Treebag) achieved 83% accuracy, 85% sensitivity, and 81% specificity. For multiple (five)-class outcomes, the proposed HEFS-selected proteins combined with Principal Component Analysis (PCA) in NN resulted in prediction accuracies for multiple-class classifications ranging from 75% to 96% for each of the five classes. Despite the different prediction accuracies of the various models, HEFS identified consistent sets of proteins linked to the binary and multiple-class outcomes.

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3