A quantum leap in the reproducibility, precision, and sensitivity of gene expression profile analysis even when sample size is extremely small

Author:

Lim Kevin1,Li Zhenhua2,Choi Kwok Pui3,Wong Limsoon1

Affiliation:

1. School of Computing, National University of Singapore, 13 Computing Drive, Singapore 117417, Singapore

2. Department of Pediatrics, National University of Singapore, 10 Medical Drive, Singapore 117597, Singapore

3. Department of Statistics and Applied Probability, National University of Singapore, 6 Science Drive 2, Singapore 117546, Singapore

Abstract

Transcript-level quantification is often measured across two groups of patients to aid the discovery of biomarkers and detection of biological mechanisms involving these biomarkers. Statistical tests lack power and false discovery rate is high when sample size is small. Yet, many experiments have very few samples (≤ 5). This creates the impetus for a method to discover biomarkers and mechanisms under very small sample sizes. We present a powerful method, ESSNet, that is able to identify subnetworks consistently across independent datasets of the same disease phenotypes even under very small sample sizes. The key idea of ESSNet is to fragment large pathways into smaller subnetworks and compute a statistic that discriminates the subnetworks in two phenotypes. We do not greedily select genes to be included based on differential expression but rely on gene-expression-level ranking within a phenotype, which is shown to be stable even under extremely small sample sizes. We test our subnetworks on null distributions obtained by array rotation; this preserves the gene–gene correlation structure and is suitable for datasets with small sample size allowing us to consistently predict relevant subnetworks even when sample size is small. For most other methods, this consistency drops to less than 10% when we test them on datasets with only two samples from each phenotype, whereas ESSNet is able to achieve an average consistency of 58% (72% when we consider genes within the subnetworks) and continues to be superior when sample size is large. We further show that the subnetworks identified by ESSNet are highly correlated to many references in the biological literature. ESSNet and supplementary material are available at: http://compbio.ddns.comp.nus.edu.sg:8080/essnet .

Publisher

World Scientific Pub Co Pte Lt

Subject

Computer Science Applications,Molecular Biology,Biochemistry

Cited by 19 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3