Significant random signatures reveals new biomarker for breast cancer

Author:

Saberi Ansar Elnaz,Eslahchii Changiz,Rahimi Mahsa,Geranpayeh Lobat,Ebrahimi Marzieh,Aghdam Rosa,Kerdivel Gwenneg

Abstract

Abstract Background In 2012, Venet et al. proposed that at least in the case of breast cancer, most published signatures are not significantly more associated with outcome than randomly generated signatures. They suggested that nominal p-value is not a good estimator to show the significance of a signature. Therefore, one can reasonably postulate that some information might be present in such significant random signatures. Methods In this research, first we show that, using an empirical p-value, these published signatures are more significant than their nominal p-values. In other words, the proposed empirical p-value can be considered as a complimentary criterion for nominal p-value to distinguish random signatures from significant ones. Secondly, we develop a novel computational method to extract information that are embedded within significant random signatures. In our method, a score is assigned to each gene based on the number of times it appears in significant random signatures. Then, these scores are diffused through a protein-protein interaction network and a permutation procedure is used to determine the genes with significant scores. The genes with significant scores are considered as the set of significant genes. Results First, we applied our method on the breast cancer dataset NKI to achieve a set of significant genes in breast cancer considering significant random signatures. Secondly, prognostic performance of the computed set of significant genes is evaluated using DMFS and RFS datasets. We have observed that the top ranked genes from this set can successfully separate patients with poor prognosis from those with good prognosis. Finally, we investigated the expression pattern of TAT, the first gene reported in our set, in malignant breast cancer vs. adjacent normal tissue and mammospheres. Conclusion Applying the method, we found a set of significant genes in breast cancer, including TAT, a gene that has never been reported as an important gene in breast cancer. Our results show that the expression of TAT is repressed in tumors suggesting that this gene could act as a tumor suppressor in breast cancer and could be used as a new biomarker.

Publisher

Springer Science and Business Media LLC

Subject

Genetics (clinical),Genetics

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3